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Logistics

• Project progress updates 03/29
• short presentations  
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UNIT 2
• Low-Resource NLP

• Summarization

• Dialog Systems

• Question Answering
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Question Answering

Goal is to build systems that automatically answer 
questions posed by humans in a natural language 
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One of the oldest NLP tasks [Simmons et al. 1964]
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• Testing language understanding

• Addressing human information needs
• Talking to a virtual assistant
• Interacting with a search engine
• Querying a database

• Understand the question
• Relate to a position in document
• Extract the answer
Lehnert 1977: “Since questions can be devised to query any aspect
of text comprehension, the ability to answer questions is the 
strongest possible demonstration of understanding.”
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NLP task ó QA task

• NLP tasks can be reduced to machine reading

• Given passage extract information [Levy et al. 2017]

(Barack Obama, educated_at, ?)
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Human Need for Information
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Motivation

• Search results
• Collection of documents relevant to query, not answers

• Answers to questions
• Specific need
• Easily accessible to/from devices
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Objective

• Tasks

• Datasets

• Models
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QA Categories
• Information source

• Text passage
• Web documents
• Knowledge bases
• Tables and images 
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QA Categories
• Information source

• Question type
• Factoid vs non-factoid
• Open-domain vs closed-domain
• Simple vs complex 
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Types of Questions
• Questions are very broad

• What is 4+5?
• How do you say [sentence] in Greek?
• Why is ocean water salty?

• Factoid Questions
• What is the official language of Algeria?
• When was Marie Curie born?

• Potentially answered using a knowledge base
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QA Categories
• Information source

• Question type

• Answer type
• Short segment
• Paragraph
• Yes/No
• List 
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QA Tasks

• Machine reading
• Answering questions about specific textual passages

• Open-domain question answering
• Answering questions by collecting information from 

database or multiple sources
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Early Work
• Simmons et al. (1964) first work on QA from text based on 

matching dependency parses of a question and answer 
• Yale AI Project

• Schank, Abelson, Lehnert et al. (1977)
• Models of cognitive processes of reading 

comprehension



Machine Comprehension (Burges 2013)
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MCTest

Answering questions over simple story texts 
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MCTest
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MCTest
Baselines:
1. Ngram matching: append Q &A

Return answer with highest sentence 
overlap 

2. Dependency parse
3. Textual Entailment

Not enough training data
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Q: Which linguistic minority is larger, Hindi or Malayalam? 
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Two Paradigms of QA (factoid)

• Knowledge-base enabled

• Information-Retrieval (IR) based
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Knowledge base enabled QA
• Find semantic representation of query

• When was Ada Lovelace born?  -> birth-year (Ada Lovelace, ?x)

• Query knowledge-base
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Information-Retrieval based QA

• Information-Retrieval based (aka open-domain QA)
• Use IR to find documents with answer
• Use machine reading comprehension to locate answer

• Retrieve answer from a passage/document
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Information-Retrieval based QA
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IBM Watson

• Questions full of subtlety, puns and wordplay
• Clue: “Colorful fourteenth century plague that became a 

hit play by Arthur Miller.”
• Response: “What is The Black Death of a Salesman?” 
• Exact answer not available

• Putting together pieces of information from various 
sources, because the exact answer is not likely to be 
written anywhere
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DeepQA

• DeepQA
• Indexed several resources

• Wikipedia, encyclopedias, Wordnet, semantic resources
• Massively parallel

• Several hypotheses and interpretations

Ferrucci et al (2010)
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DeepQA
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QA tasks
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Datasets
• With rapid progress in deep learning

• Renewed interest shown in multitude of datasets (30+)
• Train supervised approaches
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MR as Cloze Task
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IR-Based QA

• Stage 1: Retrieve using IR

• Stage 2: Machine Reading
• Currently most systems do extractive QA

• Answer is a span of text in the passage 
• Modeled by span labeling: identifying in the passage a span 

that constitutes an answer
• Given a question q of n tokens q1,...,qn and a passage p of m 

tokens p1 , ..., pm compute the probability P(a|q, p) that each 
possible span a is the answer
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SQuAD 1.0 and 2.0 (Rajpurkar et al. 2016)



43

SQuAD 1.0 and 2.0

• Annotators given Wikipedia article
• Create questions based on article
• Problem?

• TriviaQA meant to address that
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Neural Models for MR

Slides adapted from: Danqi Chen

Key idea: Need to model which words in the passage are most 
relevant to the question (and question words) 
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Bidirectional Attention Flow (BiDAF)
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Bidirectional Attention Flow (BiDAF)

•Attention Flow layer 
•Idea: attention should flow both ways – from the context to the 
question and from the question to the context 
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Pretraining + Finetuning

All BERT parameters (e.g., 110M) including newly 
introduced parameters (w’s) optimized for L 

Slide credits: Danqi Chen
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Pretraining + Finetuning
Evaluation: exact match (0 or 1) and F1 (partial credit)
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Pretraining + Finetuning
Evaluation: exact match (0 or 1) and F1 (partial credit)
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Modified Pretraining Objective: SpanBERT
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Is QA a solved Problem?
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Is QA a solved Problem?
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Evaluating QA
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Open-Domain QA
• Contrast to closed-domain systems (medicine, technical 

support) 

• Don’t assume a passage is given; instead, consider a collection of 
documents
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Retriever-Reader



66

Information-Retrieval based QA

Slide credits: Danqi Chen
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Retrieval is Trainable

Slide credits: Danqi Chen
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Large Language Models do QA
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Takeaways
• Many flavors of reading comprehension tasks: cloze or 

actual questions, single or multi-sentence 

• Complex attention schemes can match queries against 
input texts and identify answers

• Multi-hop Question Answering - ability to answer questions 
that draw on several sentences or several documents to 
answer 
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Limited QA

• Focus on questions such as test answers
• What were the main causes of World War 1?

• Summarization (multi-document?)
• Can you get the flu from a flu shot?

• Need an explanation, not just Yes/No
• What temperature should I heat the milk to?

• Potentially listed in KB but not really
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Beyond Textual QA

Visual QA [Antol et al., 2015] 


